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A UNIFIED MODEL FOR THE EVOLUTION OF NONLINEAR WATER WAVES

1. Introduction

"his paper describes a method for obtaining accurate representations of

evolving water waves under a wide variety of physical situations. The model

gives accurate results for waves almost to the breaking point, for waves in

channels of varying section, and for waves throughout the wavelength regime

from shallow water waves to essentially deep water waves. The developments

that have made this possible include the use of a new theoretical

conservation law and associated formalism that reduces the dimensionality of

the caculations by one, while still retaining nonlinear and dispersive

effects to high order. Accurate simulations of high waves can now be

carried out roughly two orders of magnitude longer for the same

computational investment than is possible with previous methods of

comparable accuracy (Fritts and Boris, 1979; Hrlow and Amsden, 1971; Chan

and Street, 1970). Conversely, the model is qualitatively more accurate

than models that run as fast (Chwang and Wu, 1976; eregrine, 1966, 1967;

Madsen and Mei, 1969). Two distinct elements go into the research: a

general mathematical analVsis of the physical situation, and a partly

empirical formulation of an appropriate numerical method to generate

solutions to initital/boundary value problems of interest.

Manuscript approved November 16, 1982.



The word "order" will occur frequently in the paper. Here, and

everywhere else in the paper, except where explicitly stated otherwise. it

refers to an ordering of parameters that measure the smallness of wave

amplitude and the smallness of wave train dispersion. The lowest order

corresponds to long waves of infinitesimal amplitude that travel Through

water of constant depth. Specifically, at Icwest order the wave has an

amplitude that is negligible when conared to the undisturbed depth, and any

relevant horizontal scale of the wave (wavelength or half-width) is

infinitely greater than the undisturbed depth. The waves are non-

dispersive. .11 disturbances can be described as a superposition of waves

of unchanging shape. The wave shapes are arbitrary.

Three bodies of theory have been developed that can describe evolving

waves that are not so small or not so long. Linear wave theory treqts

infinitesimal amplitude waves of arbitrary length, and a satisf. ... v

account of the basic theory is available in many places (see, e.q. .amb

1932). Except at the long wave limit, waves are dispersive, an. so only

sinusoidal waves of infinite extent can be waves of unchanging shape. long

wave theory treats waves infinitely long compared to the depth; they can

have arbitrary amplitudes. NO wave can propagate with unchanging share

(rates of change of shape tend to vanish in the limit of small amplitudes,

or, more precisely, small slope). Waves of depression can be accommodated

by the the theory for indefinitely long times, hut waves of eevation

steepen, until at some finite time the horizontal scale at a wave front is

not particularly long compared to the depth. Extra features such as bores

(the water-wave analog to shock waves in gas dynamics) are added to the long

wave theory to complete the description. Again, accounts of the basic

theory are widely available (see, e.g., Stoker l057).



A third situation can exist, in which effects of nonlinearity and

dispersion are balanced sufficently that waves can propagate for long

distances without significant change of form, even in the absence of

dissipation. The first person to report them in scientific annals was

Russell (1838,1845). He first saw a solitary wave in a canal, and being on

a horse at the time, was able to chase it along its tow path for a mile or

more. He later performed laboratory experiments and reported an accurate

relationship between the wave speed and wave amplitude. Much theory has

gone into describing such waves, mostly published in two spurts. During the

latter part of the 19th century the governing equations and some solutions

for fairly long waves that can travel both ways (Boussinesq, !871,I'2) and

one way (Korteweg and deVries, 1895) were set down. In their pioneering

nierical study of solutions to the Korteweg and deVries (KdeV) Equation,

Zabusky and Kruskal (1965) discovered that overtaking solitary waves emerged

with properties no different from their pre-collision ones (apart from

roundoff errors and slight phase shifts). "hey suggested that solitary wave

solutions to the KdeV Equation be called "solitons" to emphasize their

ability to survive nonlinear collisions. Much research on solitons has

resulted (see the review by Zabusky, 1981, for a modern summary).

The Boussinesq, KdeV, and RLW (Regularized Long Wave--an alternative to

:KdeV) descriptions each include the lowest order effects of dispersicn and

nonlinearity. Each has waves of unchanging shape--solitary waves and

periodic waves. Each can describe evolving waves. But the accuracies of

L 3



each description are limited by their retaining only the lowest order

nonlinear and dispersive terms of the governing equations.

Some researchers have worked hard on the problem of actual solitary

waves in water (restrictions on wave amplitude are removed, dissipation is

not treated, and the waves are assumed to be of unchanging shape from the

start). These theories produce results on the structure of solitary and

periodic waves all the way to breaking, and are excellent benchmarks for

assessing the accuracies of theories of waves that evolve to solitary waves.

But these are special calculations, limited to waves of unchanging shape.

The attempt here is to develop a satisfactory methodology that is

demonstratably accurate for waves where dispersion and nonlirearity are in

approximate balance, while still retaining the ability to treat waves where

they are not in balance. The analysis retains exactness for as long as is

practical. At a crucial step the choice of solving for a flow field by a

low order expansion has to be made, and this limits the description of

solitary waves to one order better than the Boussinesq and Korteweg-deVries

descriptions (the accuracy turns out to exceed that expected at the same

order by comparison with exact solitary wave results). Long wave theory is

retained (though some tricks are necessary to maintain stability), and the

linear theory is retained through a high order in a dispersion pare--ter,

and can be extended to even higher orders easily, if desired. The method is

straightforvard and computationally efficient.

Section 2 gives the analytical development. Section 2A discusses the

pair of prognostic equations used in the work. One of them comes from

recent work (Witting and McDonald, 1?P2). These exact equations do not

close the system, however, and high order expansions are ade to close it

(Section 2B). In Section 2B the fluii velocity at the hott-m boundarf is



chosen as one of the basic dependent variables to make the expansion far-

reaching (for linear waves the expansions converge for all wave nu~moers).

In Section T further transformations are made that retain high accuracy

while keeping small numbers of terms in the expansions (this is analagous to

representing a function by Pade approximants). Section 3 outlines the

numerical method used to generate solutions, and discusses boundary and

initial conditions. The numerical method is leapfrog, which eploys

centered time and space finite differences. Its stability pronerties are

discussed. Section 4 describes tests of the accuracy of the model by

comparing properties of solitary waves that evolve from the calculation with

theories that describe nonevolving solitary waves precisely. 7-e model

solitary waves turn out to be suprisingly accurate almost to breaking

amplitudes. ection 5 describes the capability of the model !no treat a wise

variety of physical siutations. in (5A) the protlem of a head-on collision

of solitary waves is examined. The solitary waves are found to be near-

solitons (but not exact-solitons). in (5B) dispersive wave trains are

generated to demonstrate how the model handles waves of varying wavelengths.

Section 5C shows si-ulations of laboratory experiment- on the propagation of

waves through channels of varying breadth. The simulations mirror certain

aspects of the experiments that other theories miss. Section 5D shows

examples of undular bores running through times and distances long enough to

ratch experiments performed by Favre (F5. inally, Section 6 discusses

the key features of the model that are felt to be chiefly resronsible for

its accuracy, efficiency, and capability.

S!



2. Analysis

A. The exact governing equations

The physical model used here takes the fluil to be incompressible ano

invisci, undergoing only irrotational motions. Rigid inmermeahle wlls

bound the sides and bottom of the fluid. A constant-oressure surface bounds

its top. This physical model is that most frequently taken by other

researchers. Figure 1 shows the geometry and the definition of some of the

physical variables.

Three exact relations hold for fluid motions in a channel having

breadth b and instantaneous depth h:

3n7 1 + L (uhb) = 0
t bh3

a- (U + n'V + -Lx Ign + -u + n'V )2  -v 2(l + n, 2)=0 (2.t s S ax 2 (I + s ' )  :.

a an = a n
at ~s ax + n,7 at \ s ax,



where the horizontal displacement is x, the time t, the elevation above

still water level n, the surface : Lcpe ', the co.-ponents of surface

velocity u s (horizontal) an-i v verti n-al, an-i vertically averaged

horizontal velocity u, and the acceleration of gravity g. The vertical

coordinate y, positive upwards, does not appear explicitly in 2.l-2.3).

Equation (2.1) is the equation of continuity (Stoker, 195- gives a

complete derivation). Strictly speaking, the product b is the area acove

still water level and the product uhb is the volime flux of fluid. Thus,

should be interpreted as the average elevation above still water level, and

u as the average horizontal velocity over a cross section. For sidewalls

that are close enough together (b << h), and possibly for wide but gently

varying b, n and u are sufficiently constant across the section that I can

be taken as the surface elevation and i the vertically averae-! velocitV

(see Ireen !33). h"is paper so interprets n and T7, ani i nores crcss-

channel variations throughout. Equation (2.2) can be derived from

Bernoulli's Law for irrotational motions or directly from the huler

Equations for inviscid but not necessarily irrotational flows (Witting and

McDonald 1982). Equation (2.3) is the kinematic surface relation. Th re

second identity in (2.3) is a simple (if not transparent) identity.

-- . . .--- ~. -.. 7



A) PLAN VIEW

B) SIDE VIEW

C) DEFINITION OF VARIABLES

~'grr 2. The geometrny cf' thae no-plit-atonal cclannp2. 7ria'-2e denl-hs a~s

shown in (b) are not -reated ,I- this paer
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K+ I'V -ni s'h titr (2."'it gives

-:-e ca r crDz-,.z-stU eqizatlc-n fl- T aniq'1 l in t'-.e numerit2 1

+ L Eh + n)t)!
;t a~ x

+ -a- !g7 + + ) - + f
2

)
2 -' 2

7he te-rm n/ in (2.5) car. be~ renlaced wit'n a 3/ax : erm sn 24 and4 So

e:oh is of the form

qfa t + I-'X,

where f is either nb or q. and iz x,t" ccntains 11, :1 and u7. Closing th

s-

relation is found by consilering- the velocity rctenti.al, wic-h satisfies

720

where for irrotational fly.rs

= )3x;v'X,Y,t)/ = 30/3y _



E. A series sclution

-n terms of the f'lui! veloc2ity at the bottom (ta:en here to lie along

y ) ub --~ 'XO,t), !2.' gives the Taylor series expansion

Yu, ,,2 +_ _-_ _ +_.

u 20 t 2' U at.........+ +OX

w;here primes lenote partial differentiation with respect to x.

-n terms of ui, t turns out that:

7. 2 .,

u, - - h 2  ' + h4 ,v

(-~'~. h 2N rrimes

= Ub - (h u~' ' -- (h .... -'
+ 7-1) h LL ___

-s  2 2 - .. +

,--- _z- __ ( 2 N  b . . I

(2N)! 3x 3 N1 "
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lonsequently both u and q can be written as function of u,. Fqua'orcn

2.lO1 and (2.11), along with (2.4) ani (2.9), close the system. and are an

-xact representation for irrotational two limensional waves in an

incompressible inviscil flui ling ato P a rigii immerneable hori zonct -e

if the channel walls and/or still water depth vary only gradually over a

characteristic distance associated with the wave motion (wavelength o r

solitary wave thickness, for example) we ex-oect that the set will prodluce

results that are exazt in the limit of gradual variaition and mray be quite

accurate for sufficiently gradual variation (t reen l_ 3P).

71Arnroximations

In the numnerical work (2.4) and ( are used to adlvance nand

, ne time level inr a finit e di'ference approximation. Th-e problem '.'.n

ar'ses of how to evaluate th~e fizlds in the 3/a3x ter-s of ('2.L4 an. 5 a

th-is new time level. UTsing the formulation here, this involves solvinc1

'2.11) for ub from the new values of qsand h = ho + n. The method of

solution adopted here employs a fast "Thidiagonal Matrix Solver" (Doris,

1?76). It solves (inverts) matrices containing only on-diagonal and the

ad, oining off-iiagonal elements. T"hus, the finite difference form of (2.11

:an be inverted if truncated after the term -1,12 (h 2 ,, bf)'. M.oreover,

repeated operations with the tridiagonal solver can solve equations that

resemble (2.11) and perfectly account for the linear terns.



Pather than try to retrace the reasoning that led to the formulation

eventually adopted, I simply state the procedure now ani later connect it to

(2.10) an, (2.11).

The dept h h that appears in f2.10) and (2.11) is expressed as

h=ho+n. Equation (2.11) is then rewritten:

I1-L (h 2,, qt _2_h2)Ub ,  + ... (2.12'qs :u 2"o h° ' 2' " "oh

A new velcity variable :i is then introduced that t ransform- '2.12) to th

q:s aj) 2~2y1

u ,n u 2 2

{i) (2)

where a" and a are constants that enter the linear terms of 2. '"'.
m~n m,n

Equation (2.10) is similarly decomposed i.e.:

~ l) 2 -, 1(h 2 -h 2 u'' +
m,n o 6

+ b ( 2 ) h4  ui v  + I (h4_,h4  u _
m,n o 120 0

12



The coefficients am n and bm,n are selected to maximize the

accuracy of linear waves. The first few combinations are:

ist order:

(1) (2)
a =1/3; a (2)

(2.15)

) 0; ...bo, I

2nid order:

CI) (2

al,1 = 2/5; al, ;

(2. *

((2)
b = 1/15; a,

3rd order:

a 1, =a!,' at, 2  ,

(1) ()

12 2/21; bi' -

4th order:

(I) ; 32 .

2,2 2,2
2. i

= 1/9; "b,-) =  /145; , 2  ,
?,2 2 ' -2,

13



-he dispersion relation for linear waves becomes of the form:

c 2 
_ I

'ist order) 
2 1

+ k-2

1+i k2.h2

(2rd order) 150 d
1 + i- k2 h 2

5 0

+ 2 k2 h2

(3rd order) 21. o
k2h2 L

, + - k2h2  + k k ,

1 + - 2h,2 + k4I + o 63 0

These are the entries to a ade table P(N,1) or P(. 1,.:1 representing

tanh (kh0 ), and are correct to the order of k~h 2 indicated in the

parenthesis.

To second order 'in dispersion) the calculations can be explained mo7

simply. Use one tridiagonal solve on (2.13):

qs= 2 (h ')' - ff2 -h ),1 2 .2>5 o 2

thus obtaining u = : (x,tne). Then substitute tnis

value of u into (2.14):

(x,te) = ,_lh2 2 '' - £ ¢h 2 -2') '

to evaluate the new value of u.

14



If the fieijs r -ind q Sare regariedl as arisi-ng f'ri the du~al

t-xpan Sion in an amolitu:de narameter E~. and" a s~s

Parameter Ui~h2 / £2, whe,,re Z is a -!htiracter'stjc rizortal scoale of th2e w

motio)n, then the pr)ctdur- Lzsing (2.?22) anJ '2. 21) retains -I! terms Df 'the

e-xact equations (22and '? that -ire tlhe followring criers:

W /2 (governs waves ln ong wave theory.;

if only terrms ~nE,01/ 2 are retlainedi,

we have linear _ong wave theory,,

2 (~an aporoximation to li.ne-ar waves

E2 W1/ 2 and cp 3 /2  (the TBo'ssinesq Equations retain

terms on",,! through these orders)

E3 1/2 L E (the first order beodthe

Boussiniesq Fquition.2

The lowest order ter-is that are ironped are:

O(EW7/2); ID(F2 1,5 / 2 '; F 3 u 3 / 2 ) 2

.. oving to a 2rl and 4th oripr fornullation, which Involves sclviniz

,2.l3) wi--th 2 successIng triliagonal matrix s.olvers, -,ushes the 1is*3-ersive

errors from 0( c7/2) to 0( FU9 1 2' and D( El1 /2 ' reszec- i'rely

15



Unfortunately, the other terms of '2.?2) , i.e., 2 5/2) ,ni :'E33/2

remain. Even so, the formulation stands at one order in E ani w further

along than the Boussinesq Equations. ks we shall see, the numerical resu1ts

yiell solitary waves of a practical accuracy beyond that expected fro-

(2.22).

Figure 2 iisplays the connection between this theory and other water

wave theories. As the figire shows, each theory is valid over a restricted

range of nonlinearity, dispersion, or both. The merit of this theory is

two-fold: first, it incorporates al of long wave theory, no matter how

nonlinear, and goes all the way to the fourth order in k 2h 2 in a long

wave expansion of linear theory. Second, this theory goes one order bleyond

the theories of Boussinesq, Korteweg and deVries, and other investigators

who consider nonlinear dispersive waves. aensequently, the formal ard, as

will be shown, the practical) accuracy of this theory is higher titan -]

Boussinesq type theories, and can be applied to hnigher waves. 'n szira y,

this theory can be called a "unified" theory of water wave propagation in

that it incorporates long wave theory, a high-order version of linear wave

theory, and can treat higher waves than any other time-dependent theory that

includes both nonlinearities and iispersion.

To show how well the theory deals with linear waves that re no' so

!one, Figire 3 gives disnersion relations from various theories. Th.e "nd

order" theory is shown to be fairly accurate. 'The "4th order" the'rj that

makes use of (2.1) can hardly be distinguished from exact linear theory

over the range of kh 0 displayed. This range to kho=8 takes !is into

essentially deep water waves. For example, the phase speed of waves haTr-ng

kho=3 is within C.0000002 of the speed of waves in infinitely deep water.

16



LEGEND

=LINEAR WAVE THEORY

EM LONG WAVE THEORY

EZ BOUSSINESQ THEORIES
G~THIS THEORY

z

X

DISPERSIVE INDEX. M

Figure 2 -Various Water wave theories for a rectangtilar channel. 7-e'~ e

of evolving waves in water generally are limited by truncating ter-s in the

exact governing equations that involve iispersion or nonlinearity or both.

The convention used here is to consider the linear long wave theory as being

of "zeroth" order in lispersion and nonlinearity. "lie iispersive inlex -

is the power of (h 2 0 2 1 ax 2 ) above that of long wave theory. The nonlinear

index N is the power of n /h0 above that of long wave theory. Thius 'I=C

corresponds to 41 /2, N .tIcr %M=1N,= to E:41/2. 'Tote that for siuatiz-n

-where nonlinear and -ispersive effects are nearly balanced, this thec!ry

extends one order beyond the B3oussinesq Equations (i-n each of M, 4%) rr

linear dispersive waves this theory (when 4th order moefficients from~

are used) is three orders bey.ond the Boussinesq Equations. T-his thIeory

recovers long wave theory when ',-=O, uinlike somp versio'ns of the 7- uss'nkesq

Equations.

17
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3. The numerical method

A. The governing equations

The simplest wave problem that the theoretical (and computational)

model can address is its lowest order one--long linear waves in a

rectanguiar channel. Any nunerical method used for more complex wave

propagation had better do a good lob for these. As pointed out earlier,

this lowest order theory retains terms o( ctP /2) and drops those of higher

order. Equations (10-11) give = u.; j. = u, and so q H U = Is Equations

(h-5) then become:

a + _= 0, and
TT -C 3xDo e 3 x

-- + g =at ga-x =

Systems sirilar to (3.1) appear in many branches of science. For numerical

solution, the unstaggered leapfrog method can be extended to the problem at

hand, and can be made accurate by a suitable choice of space and time step.

Thus, the approach taken is to represent the fields in finite difference

form and approxirate derivatives with respect to space and time by -entral

differences.

19



With subscripts denoting the spatial position, and superscripts the tine

level, the sirTlest difference from of (3.1) that places both n and q at the

same grid points is

m+l m-! rn c
n nl 0nl - -

2 t 0 2Ax

m+ M M-I m
0 n q- n n+l n n-I =

2At g 2At

Unon substitution of a linear wave - exp i(wt-kx) for n and q we derive:

sin2 ( t) = gh sin 2 (k x)

t = 0 (Axz)

Equation (3.3) is neutrally stable for At Ax(g /2, in that w is

real for all real k. The dispersion relation for At=Ax (gh o)-/ 2 is

W2,k 2 = gh °  (3.4)

which is exact for arbitrary wave numbers and numerical resolution Ax. en

!Atj @ xj(gho0 )-112, we can derive the relation

W2 1 [(Ax) 2  gh O (t)
2  O N 4 :z--. 1 [(-) (- Z 1, 0x 0o 4

0 (1

This equation contains second order numerical dispersion unless

!AtI=(gh0 )-1/2 AxI. It thus appears that the choice of At!=(gho)- 2
IAx'

20



will likely minimize nuierical d-ispersion for fairly long waves. 7or lonz

linear waves this choice lies at the boundary of instability, however, ar

we must examine stability in a little detail for the more general'rlem.

7o do this, let us consider the effects of nonlinearity and lispersion

separately.

Consider dispersion first. Trhe second order linear set of equations

takes the dimensionless form:

at ax 15 axi

3 , 2 32" 1  Tj

at -5 x

Distances are mteasured in units of h and speeds in units g ain,
00

letting the field be represented as proportional to exp [i( t-kx)], we can

derive the following:

1 + -- P

sin 2 (wAt) = (%t2 sin 2 (kAx) 1 +

where P = l-cos(kAx) !(AxY 2 ; ). Consequently, the expression within 1,

brackets of (3.7) never exceeds unity. For (At/Ax' 2 <1, the RHS of (3.")

does not exceed unity, so w is real, i.e. we again have neutral stability

for all k, Ax.

After expanding (3.7), one can derive the numerical dispersion relation

(for !AtI=Axl:

1 + L k 2

=2 15 3 (Ax) 2 + hi..er order terms in (Ax) 2 (3..

5
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The fi rst term of the rik,71't 'nan side -.f (3. gives the exact I-s-ers-'on

re.~ition for (3. 6) . Thie lowest Dr~er numerical discersfon errors are

,roportional .o k' Ax' 2, wit a sml icefincnratt

At<'l' -i-wold fntrodluce an error ,<k2(Ax,, 2 1 w so

coeffici-ent 1rn' ss Lt is almos' A x.

?Dthr fcr-nlati-ons of the proble.-, besiies te~ ng o_ L wer ' rder,

some!times _,hoose -a velc i t' variabl :e in such a wa; t. a ',t~iientally

zonztrits- -ract4ical solutions. Vo xme f;~~h aea'

the low ord- er f '=,iation) is taken' to 'ce the deenen *elocity vari4a!-'-e,

the linear'.el ?muss-inesi eouations ar- 2-ill in t-e '.-'r-n .

.),Ibt -W4th u replaced by -~ and differen~t numer: '.aL '.c'"

(36,-1/15 gzoes to +1/3 and 2/5 aoes to zero. Th'en '. be om-es

sin (At) = t_..2 sz,'hx i"

inn A

Here the factor within the brackets appDroaches -~as (x 2 Tand so

sin 2(r~t) <3 and w can have an oznaginar-y part, inres;unably unstable. -r,'i

At goes to zero at least as fast as (Ax)' is stabilitr assured. Thi11s r-..aes

numerical work ver-y expensive foDr eqluations having more dispersion in -zrmts

like the first of (3.6) than in forms like the second, because more time

steps mu~st be taken. The Kort eweg-deVries Equation has expensivre

Jispersion, and typical finite difference solutions even as coarse as

Ax=0.25 require time steps the -Drder ,. I2 SeVignhr 9 o

fuller discussion). The 'Regularized Long Wave Lquation, or. the ot'.er '-an-,,

has its dismersion i-n a form akin to the second of (3.6'), and numerical wcrk

can be done at At=Ax (e.g. Bona, et a! 19'10).
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The inclusion of some nonlinear ter s to for simpole waves changes

the stabilitv anaisis onlj by a little when the waves are long. Then one

an approximate the nonlinear terms as the proiuct of a slowl var.'ing ieli

an, a uotential 'l unstable rapidly varyinr field. Th.e slowly varyi.c fir. .

's incorporated in the long wavelength wave speed, resulting in
+

,Al 2 1 + -sin 2 (,At) = sin 2 .

- 5.

where c = gh)1 /2 ± i includes nonlinear zontrihutions and can exceed unit-Y.

Tnhus (cAt/Ax) 2 is a factor that can exceed unity when At=Ax. Note, however

1+ 2

that this does not ir-pl, instability, for sin 2 (kAx) 1 f s hounded1+

P

by a number less than unity, the bound being dependent on (Ax) 2 . For

example, for Ax=l/c, tYical of the oomputations run to date, this factor

never exceeds 0.2. 7gnce, c can exceed unity bt, a comfortable mar.in

without necessarily giving instabilities. The stability analyosis given here

is not complete, however. Computational instability has arisen for some

cases involving ver f high waves. The conditions under which instailit-Y

occurs will be identified later.

B. Boundary Conditions

In all calculations run to date, rigi .d impermeable side and end walls

bound the fluid. For :aplace's Equation (o.7 o possess "valid solu-icns we

must specify a local property of € everywhere along a closed boundar-. Here

the boundary conditions at the lower boundary are specified by the form of

(2.9). The top boundary condition is specified by (2.5) which says,
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4n essence, that the pressure is constant there. A, the enis the physics

.e'.anls that the nor-l comonents o' flui -I velocity match the wall velocity

a- each roint. This can be transformed to condoins on n anI ds dermanlei

this for-.lation. Thking walls to be verticai! an. movring horizontaly,

where U(t) Is the wall snpe.

We further need a condition on n at the wall. T"his is most easily

derived in a Lagrangian formulation. One equation of motion is:

32x(a,b,t) ax +a 2 _,a I t) + , 1 ao(a,b,t)t z ~~ a +  z +-'- -  I {.
at a aei p a

where a and b are the initial coordinates of the fluid particle now at

,(;,y). Let us evaluate the terms for the lid surface partiZle at the

wall. 'When the wall is nonaccelerating the first term vanishes. When the

fluid surface is horizontal at the initial time, the third term vanishes.

Apart from the possibility that the fluid at the surface accelerates at

exactly -g, this demands that ay/aa=C, which is the same as:

an , 3,Z

We know that us (wall, t) = U, Using (3.11)

q3 = U .1'

at the wall, so long as it is nonaccelerating. We -lo not consider

accelerating end walls in this report.
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* :nitiai Condit ion-s and T-ime Levels

Allcalulaions are started b,,pciyn the wall -,eor-etry and

C.le f rxn= -1), 1~t, =, throuhout the region. 7rrom then e one

2al -1'1aes .1 from r2.I3) and -I from (2.214) at t=C'. '.!alut-s of ni 3nd a5

t=±' 1,2 t are formed by one-sided time -ifferencing and -the fluxes enterin"-

(2.11 anJ -2.11' at t=+'!,!'2) At are found. The flells at t-'Atand

flu-,xes at ~-!_iAt are used to advance the calculationr to =1i2)t

7luxes at t=(3/!2)At Ln-i 'ields at t-'l "2 At are usedI to advance to t=r'2" ,

arnd thle nrocess is repeated indef'initel1y. For som)-e nuns 'he process is

c:ontinued to) t=(%-<l/2))At, anI then the time interval is reversel, I.e.,

dt-0-dt, 1i.n. the fi-elds at t=~l )tas initial cnn1i-cns. Th time

levels: -n thie r-turn towari t=0 are t= .At, a ni li-e -71'a e-W-eo the

advanci-n -tme levels unt'l t=? is reacned.

There appears to be some alvantagie in the procedlure of iiilymvn

to two adjacent t-ie levels symmLetricaly. '2thler pro(edur-s sluch as a

forward or backward whole time step difference gave sore a'~ernating grid

point noise which, of course, the pure leapfrog method doe-s not suppress as

time advances. Tranezoilal -corrections to the leapfr-oc method suppress this

oscillation, but also .. i waves a little and decrease the -Accuracy of

solitar-y waves. I have seen noev ience of statistically signi-ficant

alternating- * rid point noise in he t-e fields wh-en the alunorsare

started symmetrically, as descri.bed abnve.
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4. ests )f t he A-ccuracy and Stalbility of t he Calculations

A serie',s of rn-s were -Fde ima on r hannel- of cniformn trearjth W-*tn

initial roniti-ons as follows:

flx't~) =~(,t =a; stcl'. a -

-where a, is an initial amrplitude, and a is rel;-t4el tc it by:

Thie re7.ation bctween n an,! q in '.4.1) and between a and a, j'i ~~ ci

Dor the- (lowest ortler) analysis of a solitary, wave found-1 i. :Arb (1232D).

The O-nrltational box contained l1d4O grid*-; points; tim.,e was advancedl Iou n

:194) time st-eps. 7,,- c-teTm sizes were Ax = At = l',so tha. t the. bcx ltt

:az7roximately 1=230 anJ time advanced-. tc aorrc-xf~at ely 1 cen no.

solita r wavecl.urban-e was przsert 4r. th~e initial 'i_ -

ruins, ,ut, th.e so'litar- wave soon outrain o-ther listuirbances.

Various diagnostics were performed! to deter-ine the 3fo~tes -

wave. The lcocation and value of th-e crest elevatio)n was found by fitting a

iparabola thir)ugh th-e igetelevation an-i it: neighbors, fron whi-ch, a wave

speed was determined. Various 1:8;-egrai properties OIL thne so' itar-y wave,

such as its mass, ndx, w, ere determined 'cvy nmer-ical integration
crest

from the crest to the right side of the box. The two linear conserved

iuantities in (2.L0 and (2.5), mass and velocity, -ire fou-nd to he oevd

2roperly in the calculations.

Specifically, fror. (2.4) the conser-ved ouantity is the- total- tarea i7-c-,e

still water level; t-his comes frnm !mlt-inlying (2.0 b-y b an,; intperati'nq

over the computational box:

a [m bh)dx + r,,T(h +n)bl.j - ( +nI = .*

left right
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3e-Izuse ='i= at th- ?nI valls, xright an xeft, )nly the first term of

(4.3) is nonzero. Integration over time gives

~X~1t(nb~cx =Const

left

The integral of (4.4) is monitored at each step of the calculation, and is

found to be constant (to the four significant fibrures printed out in every

2alculation). Fron (2.5) the conserve,9 quantity is an integral of'

i*e.

a igtq dx + (g n - 1-22gn21
-- I - C(n z  tO4( .c)

left r gh t left

where in (4.5) we have droppet! terms involving q,_ and n' at the ends,

because they vanish there. 'he integral over -ime produces:

xright rt an r _ alL q ix - ..- 1 .j 1r)2 left) ,
left 3 ;= 2 at leK 2 +

+ Const !L.<

7quation (4.6) says that at each time the total "velocity" in the box

IIs dx varies only by fluxes entering from the end walls the right hand

side of (4.6)). Before distrubances reach the -walls we find that rqs dx

is conserved to four significant figures. After n*O t an end wall, we find

the differences between the two sides of (4. ) are small and can be

explained as roundoff and truncation errors.

Figure 4 shows the wave speed, figure 5 the total solitary wave mass,

and figure 6 the total energy of the solitary wave. The square- represent

runs with second order dispersion (see 2.1o); the triangles repre:ent third

order and fourth order Iispersion runs (?.17 and _.ik. Because these are

solitary waves, where nonlinear effects balance dirpersive ones, the formal

accuracy of the analysis on which the computations are basei is limitel t,3

second order, however, and improving the dispersive contrlbutir al-re

sholild not effect the formal acc iracy of the solutions. From 7gs _
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is clear that the numerical calculations are accurate - more so than "secon!

order" solitary wave theories. The second order dispersion gives the most

accurate results, likely a fortuitous result, and one which 1 do not

eiphasize. To matter how the dispersion is treated, the sol!t*ay waves are

accurate. T1he highest run using second order dispersion shown in the

figures occurs when in (4.1) ai=0.5, giving a wave that asymptotically has

an amplitude of 0.5853. When ai=0.6 was attempted, the calculations

became unstable. Using fourth order dispersion, a =0.6 leads to a wave

having an amplitude of 0.724. Th ie run for a=).7 became unstable. "o

attempts at finding out where runs with third order dispersion became

unstable were made.

The resolution Ax=At=-/8 is sufficient to make truncation errors small.

Results at resolution Ax=At=/ 1 4 show slight departu r-s from t'-cse displayed.

Runs at Ax=At=l/16 are unstable at lower amlitudes than at Axtl/a. This

result may be caused by roundoff error, and might not hold for calculations

carried out with more precision than the 6-7 places used (single precision).

Where results of runs using Ax=At=l/8 and Ax=At=l/16 can be compared, they

agree within roundoff errors. This is in accordance with the linear

analysis leading to Eq. (3.2), for (1/36) k 4 (Ax) 2 is -rer srall, -±ven if

the estimate of appropriate values to use for k4 are not so small. If we

assume that trancation errors are orocortional to (Ax) 2, the small

differences observed between a run with Axdl/L and Ax('_a te that

truncation differences between runs with Ax=l/ and Ax=I/16 should. be

masked by roundoff error, as observed.
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5. TxamPles

While it is not difficult to run numerous examples of water waves that

have different boundary geometries and initial conditions, this pacer limits

discussion to four different types that span a variety of conditions. 7r

subsection A an example of solitary waves colliding head-on is shown.

In B examples of essentially dispersive wave trains are shorn. in C

examples of solitary waves propgating in a converging/diverging channel are

shown. In D an example of long waves of depression coupled with an unlular

bore is shown. These exarples are designed to illustrate the capability cf

the numerical calculations to treat waves for which dispersive effects are

larger than, less than, and co-parable to nonlinear effects.

A. Solitary Wave Collision

The past twenty years has witnessed a surge of interest in wh eth pr the

solitary waves described by various model equations are solitons. Here i

define solitons as solitary waves that emerge from a c,'ollision with each

another having the identical structure that they had prior to colliding (an

indivilual soliton may be retarded or advanced during the collision). The

two first order theories that have been used to study colliding solitary

waves in water are the Korteweg-deVries equation

- I3n -&.

+ + Ti 1 aI

T 3x ax ax

and the regularized long wave equation

3n an 3 Ip 1 a3 n

Thie foral accuracies of (., and (5.2) are the sane. The first two terms

are C(e' 12), the next is ?(E2 v1 12 ' and the last is (i 3 12 ). kt 7(EU 1 12'
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the solution ". a/at = - 3/3x, so that in the last te., of .' -aat

be substituted for a/ax to give (5.2 without molifying 1Y.e '=ral accuracy.

Yet the solitary waves of f5.1) are solitons (2ab:sky anA :ruskal ,

while those of (5.2) are not quite solitons -3ona, et al. 1, fer

1978, Lewis and TJon 1979).

Here I describe calculations designed to see whether soli tary waves in

the higher order theor~ are solitons. "!he still water depth and the breadth

of the channel are constant. The initial form of each wave is chosen o

have a waveform that is solitary-wave-like, i.e.

n = a sech 2 a(x-x .9ma x

where xa marks the initial location of a wave crest, ond a and a are

adjustable parameters, as in Eq. (4.1). After some experimentation, : h:ave

found that the choice of a and a that produces acceptably small isturbances

other than a propagating solitary wave differs a little from that of .

Here a so!itarf wave is chosen having one of the arplitudes listei in

Table 5 LonTiet-Higgins and Fenton 119-4), for which selected, essentially

exact, solitar, wave properties are known. Amcnq these are the see ,

the mass ri dx, and the potential energ y On dx. These latter two are

sufficient to determine a and a for the particular solitary wave in mini.

The initial value of q. is found by setting a/at = ±F a/ax in t. h e -

sign for an intended right-going wave and the + sign for lf-goin , and

solving the resulting quadratic equation for q. 
= qs F

vTl
') "
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Figuare ' shows plots of the elevation above still water of a

1isturbance which started with a pair of solitary-like waes. 7he wave

it-tiallyv at x = 50 approaches an amplitude of O.lY'C crior to the

collision. The wave initially at x = 150 approaches an armlitade of 0. l

before the collision. During the collision the elevation reaches 0.6350,

somewhat more than the sum of the aplitudes of the coli~ing waves. By the

end of the experiment the rightward wave had reached an amplitude of 0.l3r2

rand was still rising slowly), and the leftward wave had reached an

amplitude of 0.3851 (and was also still rising).

Figure 8 takes the same data as used to plot 'ig. , expands vertical

scales by a factor of 3 and clips off the wave crests. Although some

oscillatory wave trains are visible that have their origin at the initial

condition, the major oscillatory wave trains that fill the region

between the solitary waves at t 3 50 emanate from the collision. These

waves have some ener { that the solitary waves are leaving behind.

Consequently, the solitary waves cannot be solitons (strictly speaking, no

more than one of them can be).

The question remains whether the existence of the oscillatory wave

trains that show the solitary waves to be not exactly solitons can be an

artifact of the finite difference numerical treatment. One potential scurce

of error could be what numerical analysists refer to as t-ancation error,

which tends to be proportional to (Ax) 2 for small Ax. To rale out this

possibility, the calculations were run with Ax = At = I "u, i.e. at one half

the resolution of Figs. 7-0. The oscillations between the solitary waves

had about the same amplitudes and phases at both ntzmerizal resolutions.
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For exa-mpi , the first few mJIina an maxima to the righ-t -,f the t-;-rger

soli-tatry wave at thie too of 7'igs. '' 'have the vaieS n2 ?2-,Ct9 ,

"C~.6,' +7 Qcr ,+. ~'~~ e :o;-rser reso-~ic;n r-.n giies

corresroni~ng valies of -+ . ' 2 7l2, -'OY~ C'C3 *~

While it is true that the coarser reoolution oscillations are a little -more

intense than the finer resolution ones, they are not "he factor L expected

under the h-ypothesis that the existence of the oscillator-y train is due to

truincation error (the reason the oscillat ions are a lit-le stronger is

likely due to the fact that with the same initial conditions the solitary

waves are a little hi4gher before collision for Ax = At =1/4, than for

ax = At = l ?

To see whether the treatment of disnersi've terms woul4 influence the

propagation, :i run -it A~x = At = ,~with fourth order 4i- oe rsicn (not the

second order "or Figs. 7-8) was made. Again, thre osciilator-y wave train is

present, with almost exactly the Fname amplitrudes and nearly the same

location of maxima and minimna as in Figs.

Finally, a test was -ade to see whether any diffusive art;ifacts were

introduced into the computer program. :gure 9 shows the results of a

cacltinrn oatmeo 0~ hntime reversed1. Thiis invclves a toa

of 10500 time steps. (As for Fig. , the amplitudes are clitted!). To t'

scale of the fiire the calculations are -oerfectly- reverso_ e. Th e

uppermost profile shown in Fig. 9 woull be iientical to the initial : rofile

if~ the calculations were perfectly reversible. In fact, these two liffer by

(l-)throughout the computational region. We ascribe these small

differences to roundoff error in running through 16c0 time steps '1800

forward and POO back) with single--precision accu!,racy (6-- 3I 7nificant

figures). The phases of the crests ar remark:ably will preserved. For
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Figure 9 -Expanded view of the same solitary wave collisicn., but ;.h

reversal and clipping at 0.04. The time scale is the same as for Figs.-,

so that the time interval betwepn curves is t3.25.
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example, the crest of the leftward propagating wave, which started ac × =

15,1.C00 returned to x= 150.015, after the round trio travel distance of 23k.

,Je may conclude that these colliding solitary waves are almost solitons, but

not nuit e.

T. Dispersive Wave Trains

The wave model derived here is designed to produce solutions for linear

and not so linear wave trains that are not necessarily long. To see how

faithfully the model represents such wave trains, consider the !isturtance

produced from the following initial condition:

n = 0.08 (x-25) sech 2 0.0{(x-25)

q = Ti(.

_Tne nondimensionalization is again the obvious h o = g i. Thi e

of disturbance resembles that of an impulse distributed over a spatial

region of the order of unity. Figure 1I0 shows the results of the

calculations running for a non-dimensional time of 100 and time reversed fcr

the following time interval of 100 (1600 time steps in all'. The result is

a dispersive wave train. The longer waves travel faster than the shorter

ones, and so these longer waves appear at the front of the train. As in all

of the figures in this paper, the time and space scales are set so that a

feature of a disturbance (a crest, for example) lines u with a slope of

exactly unity if it travels with a speed of unity (in dimensionless units.

unity corresponds to the long wavelength limit of linear wave propagation,

.gh i imensional units). As 7ig. 10 shows, the longer waves at the

front 9f the train have speeds slightly less than unity, while the shorter

waves travel 3lower. Waves near the rear of the train are ver,, short,

having length scales consiiert-ly less than the depth. (The best measure of

a length scale of a periodic wave is its inverse wave nmber k rather
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Figure 10) Waves from an impulse-like initial waveform, with time reversal.

The time scale is the same as the space scale. so that the time :tra

between profiles is 6.25 and speeds of ±1 woull show up *1ong lines o)riented

at t45. Time advances to t100, and receel to t=2C' .Th lain

scale is 0.05 per interval: the initial waveform has a maxinum of a little

less than 0.05. The calculations are rurn with second order lispersion and
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than its wavelength X. This makes the measure of the smallness of the wave

scale equal to kh o , a number that is unity when the waves are intermediate

between being shallow water waves and Jeep water waves. In Fi. l. .

waves near the back of the forward going train are essentially deep water

waves.) Tahus, the wave model sees essentially Aeep water waves, even though

its design involves an expansion in a parameter that vanishes only in the

limit of shallow water waves. How well the model treats deep water waves is

still a matter of conjecture, because sufficient testing has not yet b eer

nerformed. It is comforting, however, that we see the deep water waves, and

the dispersion relations shown in Fig. 3 say that waves should be -re.ty

well represented out to kh as large as P or more (these are reall d.e-

water waves).

As in the :alculations that produce Fig. 9, Ph code is revers-b>,

aoart from round-off error. "he topmost prmil i identical t t.e itniial

lowermost profile to within a few parts in "?6 The maximum elevation of

the topmost profile occurs at the location x= 2R. o9W# , where it was initially

at 25.965, thus indizating very good phase stability.

In order to make more quantitative statements about how wel the mc le-"

handles dispersive wave trains, "alculations w rerformed with the

following initial profile:

n = ^.5 sech- .2(x-12.5) cos 2(x-12.5' (.5'

and the initial surface velocity set from :using .2.', with F beinr the

anticipated wave speed of a periodic wave having wave number 2.0. The

resulting dlsturbance is almost entirely richt-o'ng, as ex.ectei. Fixate

11 shows 33 profiles, equally snaced in time, rnning from t = _ to
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i. re11 - Dispersive wave packet. -se time scale i t ehp e as the

scale, so that the time interval between profile. is-- Te

scale is 0.15 per interval; the intital waveform has a -mximum of '.15.

"aIula:Ltions are run with fourth order lisnersion anI Ax=At=I /9.
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3oth an individual wave crest and he entire disturbance travel at speeds

less than unity. The crests travel faster tha- t1e grour, enterinp at the

left and disappearing at the right. This is a graphic demn.tration that

for water waves the phases travel faster than the group.

The computational data that make up Pig. 11 were examined in some

detail. To round-off error, the largest wave crest travels at the linear

speed of waves of wave number 2.0. Again to round-off error, the entire

group travels at the group speed of Linear waves. This latter result is not

surprising, even though the wave train is so short that the notion of a

group speed (in the linear theory) is a little fuzzy. The former result,

that the phase of the largest wave traveled at the linear phase speed,

suprises me a little. Because the waves near the center of the train are

not small-amplitude, one might expect that they; would mo e with speeds a

little larger than the predictions of linear theory. For example, the crest

of a nonlinear periodic wave described by Stokes wave theory should travel

approximately 2 percent faster than linear waves of the same wavelength for

the example shown. The precision of the calculations of crest speed is

about 0.5 percent. Why the largest crest travels closer to what linear

theory predicts, rather than what nonlinear theory predicts, is an

unanswered question at this time. it may have to do with the shortness of

the train, so that the largest crest is intimately connectei with small

amplitude waves; it may have to do with defining a zero velocity, which

differs in the initial/boundary problems solved here frm thte oteady-state

problem solved by Stokes and others.
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As a test of one aspect of the model, the data used in generating

Fig. 11 were examined a little more carefully to see whether one feature of

high, not-so-long waves that is obvious to any observer of waves -- their

sharp-crestedness -- becomes more apparent as the wave amplitude increases.

The waves of Fig. 11 are more nearly deep-water waves than shallow-water

waves, and their slope is the better measure of nonlinearity than their

amplitude-depth ratio. Here the maximum slope is about 0.3, and so the

waves are not "small amplitude"; they are also not "near-breaking", whi ch

would call for maximum wave slopes of the order of 0.6 (tan 30°). gire

12 is a blowup of the data from the uppermost profile of Fig. 17 (at the

nop) and of the central profile (at t = 25). When large (the center of th-

figure), the waves are somewhat sharp-crested. From this we can conchIue

That the wave model reproduces the sharp-crested feature possessed by high

-water waves, even when the wavelength is not so long. Whether al! features

)2 high, not-so-long waves are reproduced from this long-wave molel is not

yet possible to say.

C. Waves in channels of variable breadth

The wave model incoroorates a "variable channel breadth, under the

circumstance that a measure of the length over which the breadth changes

substantially is mich greater than the horizontal scale of the wave. '

computational channel was set up to replicate conditions of experiments b.-

Miang, et al. (1979). The channel is 10 times wider or narrower at one end

from the other. We connect the converging/diverging parts of the :hannel

with parallel wall geometr, so that a wave can travel a long way befcro

encountering the variable part of the channel. For the liverging case,

parallel side walls occupy the region between x and x = 12' .  ! The
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w.ls then diverge Prom = 120 to the end of the channel, which is at x =

20N (3ee the to- of 7ig. 1.1. The experiments had a shorter entrance

secti:n, and iid not terminate in i rigid wall. Before the wave bounces-)of

the end wall, however, the cormutations should mirror the experiments.

They do. Figure 13 displays the propagation of a wave that is

designed to be a solitary wave initially, as in earlier lisplays. 7he

Intial conditions ire se: to be the same as those of the leftwarl-

propagating wave of Fig. 10 (except that it is right-zoinr , i.e., w.th an

amplitude that stayed constant near 0.396 at the wave approached the

entrance to the iiverging part of the channel at x = 120. 7-e wave

generaites a significant reflected wave as it first pas3es thrcugh the

iiver-'-ng section of the channel . It is here that reflections r xoected

to -e t.e larqes t, for the non!imensiona! l' n--th associated with chaDges of

channel brealth are the largest near the entrance section. The solitary

wave gets smaller, and acquires an oscilttory tail. It also sl ws Own;

this is illistrated more clearly in:. 1 , which ases the same data as for

Fig. 13, but views the scene from the coordinate system which moves with

the sneed of the long wavelergth limit of linear wave. "-e wave

travels -onsiderably faster than this limiting spee, at first, and then

slews !own as it becomes weaker, still exceeding -. he propagation

speed of the wave crest lies close to that of a s 'wave of th sa

a.mpolitude. Figure 15 expands the view over the section in whi'h Chang, et

al. 's exneniments were performed. They used wave probes t-) give a time

histo~y of elevation at one of several -elected locations. ahe' ao

comare their olser-,ations with a i. "... .-ie..... 4eor,.
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0 40 80 120 160 20
DIMENSIONLESS DISTANCE

l'ioire 13 - olitary wave propagat-ing to and througc- a I-' er,-i n~g channel

(see ton: of figure 15 for the geometr). AgaIrc, th~e timne scale: is the same

as the space scale, so that the time interval betwee n n-rofiles is 4.2r

The elevation scale is 0.05 per interval; the initial -waveform !,as a maximum

of ( - alc'ilations are -nun with sec,-nd arder isen'r n x~'~

47



0 10 20 30 40 50
DINIENSIONLE>S' DISTANCEP

Figur-e !4 Solitary wave propagating to and through a ~e~

The data are the same as for fig. 13, but are viewe~l fro-m

system moving to the right -with a limensionless speed of 4

coordinate systems being aligned at t=C.
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!IcDonald (1982) compare thieir experiments -with the-r 4e,.. e'* isUffc

say that 'he theory given here reproduces the e-ssent 4 a' ',? I- res of the

e xperiment, such as the os illatory tail brehind t-e wavre rest generated,.

thie wave passes through the diverging section, wrile the KorteweE-e~ries

theory does not.

Figure 16 replicates conditions of another experinent of Chang, et a!.

( 1 9 7 9 ), this example showing waves in a converz,*ig channel. Be!ai:3e The

physical still-water-depth happened to bce different in th-is >cn%-erzing

channel) experiment from the previous (,diverging Channel) One, the

d~imensionless geometry1 is different. Here the channel7 entrance s Ct'ion

extends to x = 140, and the lO-fold converging part occurnies only - the regi-n

b etween x = 140 a ni x = 200, The solitar-y wave resblzQcer 'andI travels

faster)as it propagates -*n the convergzing sectinn. _ --- rfl idwves

and oscillatory wave trains following the major Jistrubanneo a~e abefro,.

this scene. There is a long positive tail to the wave, however, wtic is

consistent with the experiments, but inconsistent with Korteweg-de%'ries

theory (see Witting and Mconald, 1992).

Tho asymptotic theorie. s sneak to the behavior o ae ncanl

gradually varying breadth: the first, derived by 'Dreen (18394', predic-ts

that the amplitude of the disturbance a is related to the channel '-rea-

by:

a - /~2  *

The second, discussed in detail by 'Miles (19'79), who independently derives

earlier results, gives:

a . t2/3

The firs, resalt assumes that thne wa-tes can 'he decrbd c linear lc7n. wav-

Theory., and that the itraneis v.re- narrow ccosirreI t.) 'he iis'ance
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100 120 140 160 180 200
DIMENSIONLESS DISTANCE

71igure 1.6 - Solitarf wave propagating through a converging channel. The

wave was launched at t = 0, x = 25, 'with an amplitude of 0.2. T1he elevation

scale is 0.15 per interval. Calculations are run wlth second dispersion and

Ax =at = 1/8
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over which the channel varies substantially. The second result assumes that

the waves can be described by a "orteweg-le"ries theory, anI that the

,ohannel -hanges breadth so grad ially that not only is there room for the

wave itself, but also for the wave to continually reform itself so as to

remain a solitary wave. The wave propagations shown in Figures l- 6, and

also from other geometries and initial conditions, give results that

generally lie between the extreres of Eq. 5.5 - 5.4), and cast doubts as to

whether in practice the requirements of the asy-ptotic theories apply.

Briefily, it appears that extremely long channels 'L = hundreds) may be

required to allow sufficiently gradual changes in breadth. 7'or cases run in

moderate-length-channels (L = 200) there is not enough room. "oreover, in

situations where a channel has a converging!!riverging section with entrance

and exit sections identical, we find irreversilrle behavior, i.e., the

emerging waves are smller when they leave the variable section rhan they

were when they entered. The calculations shov that this is principally the

result the of reflected waves that escape to infinity whenever a wave passes

through a section of variable breadth. Both asymptotic theories incorrecti:c

predict reversibility, at least in the sense that the amplitude of the

emerging wave should be identical to that of the entering wave.

D. Undular bores and long waves

Computational experiments were run to see whether it would be possible

to sinulate the laboratory experiments of Favre (1935), which, even today,

form the most complete set. One aspect was not modelled -- the manner by

which the bores were generted. Favre pushed water into one end of his box;

here a "dam" is broken, the water filling the computaticnal region being

initially still. Figure 17 simulates one of Favre', experiments
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0 100 2W0 300 400 500
DIMENSIONLESS DISTANCE

Figure 17 - Theular bore and long wave listurbance from the bre-a-k-nC -)f a

gentl'e-f aced Jamn. Th7e timne scale is the same as the space scale, go that

the time interval between profiles is 7l5-i.Te elevation scale is 0.2

per interval; the initi-al P!levation at th-e le-ft is 0.L. The cal-oulatlcns

are run with 'curth *)rder ispersion an,! Ax =At = 0.3125.

53



(see his Fig. 41). The water at the left has a dimensionless height of C.%.

Two waves are launched from the initial condition: a Long wave that travels

-o the left, unsteepens, and reflects from the wall at x = 0. This wave

could lust as well be described by long wave theory as by anything more

sophisticated. The initially long wave travelling to the right, however,

steepens for a while, and then starts to generate a wavetrain. The entire

stricture to the right of x = 1141 is a bore that soon becomes undular. but

never reaches a steady state. T1he maximum elevation of the undulations

becomes about 0.14 at late times.

The experiments of Favre show the undulations to form at much earlier

times, so calculations were performed with an initially sharper gradient of

elevation. Pigure 18 shows the results. The unsteepening wave of

depression travelling to the left is now accompanied by an oscillatozy wave

train, generated, presumably, by the initial sharp gradient. The undular

bore is qualitatively the same, but the undulations begin to form earlier.

Indeed, the number of waves in the train at any time closely rermsembles the

number in the wave probe records shown by Favre at locations comparable in

space-time.

One interesting feature of the calculations, also seen by Witting

(1975), is that the water depth at the location of the initial iisturbance

rapilly goes to the value given by long wave theory, until reflections from

end walls intrude. For the conditions of Figure 17 this is not surprising,

for the wave is at least initially long. For the conditions of Figure 1R,
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DIMENSIONLESS DISTANCE
* igare 19 'vular bore and othe-r listlurbancesi from the breakin'. --t

sharp-faced damn. The tim~e scale is the 3arne as the space scaiie, 90 that the

t.ime interval bet-ween profiles is 11.5e;25. 'The elevationi scale is ^_2 Prr

interval; the Initial e levation at the !,eft is r".. Thep o alyil,_atiors are

run' with fourth order dispersion and Ax = At = .3127.
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asslunptions )f th e the long wave theor-y are violated even initially, and S-)

the -rrner by which. the system adjusts to the long wave resul ts is an

tnte--rtsting proble-n. 1 ha-ie no idea how t,) go ab )ut leriving this observe!

-o see the undular bore structure a little better, the data of' Fig. 19

are replotted from the frarre of reference moving to the right with a speed

if gh . Plotted are the initial profile, and every fourthi profile of
0

Fig. 1R* This corresponds to times oil 46, 93, 139, 135, 2-31 and 218. T~he

-ualitative features correspond closely7 to calculations using the !orteweg-

deVries Equation (see Peregrine, 1i6 and Vlieenthart, 19)71). 'or example,

the line connecting particular crests near the front lis nearly straight, its

slope dIecreasing as time increases. Favre's exp eriments at e-arly times s-r w

tesame behavior. At late times, however, Favre' s Ilata s how strtn,

the lead fe-w waves having The same amplitude, only the waves further back

showi-ng the evolving sloning line . Thus, the resuilts of the computations

given here do not model this feature of the experiment any better than do

other theories.

in an qttempt to bette- model the experiments, some dissipation was

added. Mhe form of model dissipation is that of the trapezoidal correct -on

of the basic leapfrsg method, oerformed at each time s-tep). Figure 0 shoGws

t11e res-il-Ts for the same conditions as in 74-g. 19. 71ig7r-! 20 looks lik'.e a

lamped picture of Fig. 19, i.e., the waves are smaller, but the overall

envelopes of the profiles are qualitatively the same. it is ti:e that er

are differences 'in the model iizsination and the lahoratory dissipation.
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Figure 19 - Detailed view of an indular 1 ore. The data are samples of the

same data shown in Fig. 18, but are viewed from the coordinate systen -ov~ng

to the right with a dimensionless speed of 'anity, the ,oordinate systems

being aligned at t='. Shown are the profiles at everl 'h4th time step, ari,

from bottom to top, occur near t=O, 46, 13, 139, 15, '31., and ?79.
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7igure 20 - Detailed view of an undular bore ith lissipation. :nitiil data

and running conditions are the same as for 7i4s. 17-1?. The )nlV

differences between this and F!.. 19 are .iue to the effects of running with

trapezoidal correction at each time step.
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.Tvertheless, it is likely that the difference between experiment and theor-

is due to something other than dissipation, perhaps surface tension. This

contrasts with the case treated in the last subsection, where the

experiments definitely favor this theory over a Forteweg-deVries theory.

6. Discussion

The end result of the work reported here is a new model of water waves

that can describe a wide variety of propagtion situations accurately and

efficiently. "he following factors are responsible for this development:

1. The model uses exact prognostic equations in conservation form,
!-qs. (2.4) and (2.5). k ver- general derivation of (2.5) is given in

Witting and McDonald (19P2). To r-v knowledge it has not been used in wave

modeling before now.

2. Higher order expansions than used before connect the velocity

variables that appear in the governing equations. This allows the model a)

to incorporate long wave theory exactly, b) to give a good representation of

waves all the way out to kh exceeding 8, thus including both shallow

water and essentially deep water waves in the same model, and c) to

represent fairly-long nonlinear waves to one order better than Boussinesq.

3. 'he model erploys a numerical method, i.e, pure leapfrog, that

gives no unwanted numerical diffusion. The time-stepping procedures are

simple enough to analyze in some detail and to inplement efficiently on

vector computers.
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4. The model takes a time step equal to a space step (in

nondimensional units for which the linear long wave speed is unity). 1his

allows for efficient machine computations, unlike methods developed for the

Korteweg-deVries Fquation. Moreover, this procedure removes any spurious

numerical dispersion at order k2 (Ax) 2 .

5. Finally, the diagnostic equations are cast in a form such that only

tri-diagonal matrix equations need to be solved. A very fast, fully

vectorized algorithm is then used to invert the matrices.

Running times for the waves model on the T74-SC-7 co-muter are

approximtely 20 msec per time step for a computational region containing

1600 grid points. A run to t = 150 with resolution Ax = At = 1/9 takes

about 24 sec. About half of the running tine is spent in collecting

liagnostic information and can be eliminated, if desired. In sumar o,

computer costs to ran the model are very small.

No detailed corparisons have been made with other numerical models for

specific problems. In general, though, it is clear from Figs. (2-6) that

the model is considerably more accurate than Boussinesq models, and can deal

with higher and shorter waves. The flexibility of the model to treat

different physical conditions is illustrated by Figs. (7-20) -with

acccmpanying text. Consequently, the model represents a great improvement

over other expansion-type models. Fxcept for breaking waves ird other

extreme situations that it cannot reach, the inified waves model (an treat

the same problems that non-expansion-type models, such as 7Agrangian and

Marker-in-cell models, can treat, at a tiny fraction of the cost. :n

practice, these more complicated models cannot employ a resolution fine

enough to compete with the new waves model.
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